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Neural Tissue

● A synaptic learning rule for exploiting nonlinear dendritic computation
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I. Synaptic transmission 
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Axonal boutons

An axonal bouton, also known as a 
presynaptic terminal, is a 
specialized varicosity on an axon 
that can form a synapse with a 
dendritic spine. The axonal 
bouton contains synaptic vesicles 
that store neurotransmitters, 
which are released into the 
synaptic cleft when an action 
potential arrives at the bouton.
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Dendritic spines

A dendritic spine is a small protrusion 
on a dendrite that receives signals from 
other neurons. Dendritic spines are 
highly dynamic structures that can 
change shape and size in response to 
neuronal activity, and thus they play a 
crucial role in synaptic plasticity and 
learning. 
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Synaptic transmission

Synaptic transmission is the 
process by which information is 
transmitted from one neuron’s 
axons (presynaptic) to another 
neuron’s dendrites (postsynaptic) 
across a tiny gap called the 
synapse.
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Synaptic transmission

The transmission of information across the 
synapse is accomplished through the 
release of neurotransmitters, which are 
chemical messengers that are synthesized 
and stored in the presynaptic neuron. 
When an action potential reaches the 
presynaptic neuron, it causes the release of 
neurotransmitters into the synaptic cleft, 
where they bind to specific receptors on 
the postsynaptic neuron or effector cell. 
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Synaptic transmission

The binding of neurotransmitters to 
receptors can either excite or inhibit the 
activity of the postsynaptic neuron or 
effector cell, depending on the type of 
receptor and neurotransmitter involved.
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Synaptic transmission

The strength and duration of synaptic 
transmission can be modulated by a 
variety of factors, such as the 
availability of neurotransmitters, the 
number and sensitivity of receptors on 
the postsynaptic neuron and the activity 
of other neurons that make connections 
with the postsynaptic neuron.
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II. Learning / Plasticity
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Synaptic Plasticity

Synaptic plasticity is the ability of synapses to become stronger or weaker over 
time, in response to increases or decreases in their activity, i.e. the action potentials 
that reach them. Synaptic plasticity is one of the most important neurochemical 
foundations of learning and memory. 
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Synaptic Plasticity

The strength of a synapse can 
be controlled by a variety of 
mechanisms that modulate the 
release of neurotransmitters 
from the presynaptic neuron or 
the sensitivity of the 
postsynaptic neuron to 
neurotransmitters.
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Synaptic Plasticity

There are several ways in which synaptic strength can be controlled 
presynaptically:

a) Autoreceptors / reuptake: Many neurons have autoreceptors, i.e. a receptor for 
a neurotransmitter that is expressed on the same neuron that releases it. Once 
released into the synaptic cleft, neurotransmitters follow the rules of Brownian 
motion and they can be reabsorbed by the neuron. This can terminate the signal 
and inhibit or facilitate the release of further quantities of the neurotransmitter.
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Synaptic Plasticity

b) Modulation of calcium influx: The influx of calcium ions into the presynaptic 
terminal is a key step in the release of neurotransmitter. The level of calcium 
influx can be regulated by changes in the extracellular calcium concentration, 
activation of voltage-gated calcium channels, and modulation of calcium-binding 
proteins. Changes in calcium influx can alter the amount of neurotransmitter 
released, and thus modulate synaptic strength.
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Synaptic Plasticity

c) Modulation of extracellular matrix proteins: The extracellular matrix 
surrounding the presynaptic terminal can influence the release of 
neurotransmitter by modulating the diffusion and availability of  the involved 
molecules. Changes in the composition or structure of the extracellular matrix 
can alter synaptic strength.
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Synaptic Plasticity

There are several ways in 
which synaptic strength can be 
controlled postsynaptically, i.e. 
after neurotransmitters have 
been released from the 
presynaptic terminal:
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Synaptic Plasticity

There are several ways in which synaptic strength can be controlled 
postsynaptically:

a) Receptor desensitization: Receptors can become desensitized to 
neurotransmitters if they are exposed to high levels of it for an extended period 
of time. This can reduce the responsiveness of the postsynaptic neuron to 
subsequent neurotransmitter release, effectively decreasing the strength of the 
synapse.
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Synaptic Plasticity

b) Number of receptors: The number and distribution of receptors on the 
postsynaptic membrane can be regulated by various mechanisms, including 
receptor insertion and removal from the membrane, as well as lateral movement 
of receptors within the membrane. Changes in receptor composition can alter 
the sensitivity of the postsynaptic neuron to neurotransmitters.
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Synaptic Plasticity

c) Modulation of intracellular signaling pathways: The activation of 
neurotransmitter receptors can trigger intracellular signaling pathways that can 
lead to changes in gene expression, protein synthesis, and the morphology of 
dendritic spines. These changes can alter the structure and function of the 
synapse, resulting in changes of synaptic strength.
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Long term potentiation (LTP)

Long-term potentiation (LTP) is a subcellular mechanism of synaptic plasticity 
that underlies learning and memory in the brain. It refers to the long term 
strengthening of synaptic connections between neurons that occurs in response 
to repeated neuronal activity. The process involves the activation of glutamate 
receptors on the postsynaptic membrane, which leads to an influx of calcium 
ions. This triggers a cascade of intracellular signaling pathways that ultimately 
result in the insertion of new AMPA receptors into the postsynaptic membrane 
or increase of their strength, increasing the sensitivity of the postsynaptic neuron 
to neurotransmitter release, effectively strengthening the synaptic connection.
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Long term depression (LTD)

Long-term depression (LTD) has the opposite effect of LTP, i.e. the long term 
decrease in synaptic strength. LTD also occurs in response to repeated neuronal 
activity. LTD leads to a decrease in the number or the strength of AMPA 
receptors on the postsynaptic membrane, therefore decreasing the sensitivity of 
the postsynaptic neuron and weakening the synaptic transmission. 
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Spike-timing-dependent plasticity (STDP)
STDP is a form of synaptic plasticity that depends 
on the relative timing of pre- and postsynaptic 
action potentials. The strength of a synaptic 
connection between two neurons is modified based 
on the temporal relationship between the action 
potentials generated by the two neurons. If the 
presynaptic neuron fires before the postsynaptic 
neuron, the strength of the synaptic connection is 
potentiated, whereas if the postsynaptic neuron 
fires before the presynaptic neuron, the strength of 
the synaptic connection is depressed.
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Dendrites: bug or feature?

Hausser and Mel
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Dendrites: bug or feature?

The integrative properties of dendrites are determined by a complex mixture of 
factors, including their morphology, the spatio-temporal patterning of synaptic 
inputs, the balance of excitation and inhibition, and neuromodulatory influences, 
all of which interact with the many voltage-gated conductances present in the 
dendritic membrane. Recent efforts to grapple with this complexity have focused 
on identifying functional compartments in the dendritic tree, the number and size 
of which depend on the aspect of dendritic function being considered. We discuss 
how dendritic compartments and the interactions between them help to enhance 
the computational power of the neuron and define the rules for the induction of 
synaptic plasticity.
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Dendrites: bug or feature?

What are the functional compartments in neurons? A schematic representation of different 
levels of granularity in neuronal processing. (a) Calcium signalling restricted to single spines. (b) 
Signalling restricted to a small cluster of spines. (c) Signalling restricted to a single terminal 
branchlet. (d) Signalling extending across the entire apical dendritic tree.
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Dendrites: bug or feature?
Two extreme cases:

- Point neuron hypothesis: the neuron functions as a simple one-compartment  
(usually linear) summing unit, where, all synapses have an equal opportunity 
to influence neuronal output through the axon. 

- Spatio-temporal interactions among synaptic inputs and the local responses 
they trigger may suggest the importance of dendritic space and time for 
various aspects of neuronal information processing: 

- back- and forward-propagating action potentials (APs)
- synaptic inputs to spatially defined dendritic compartments
- synaptic plasticity
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Dendrites: bug or feature?

Point neuron (classic approach)

The rule for combining the effects of many synapses 
under this model is generally assumed to be linear, 
and can thus be expressed as a weighted sum of all 
excitatory and inhibitory synaptic inputs.
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Dendrites: bug or feature?
Modern point neuron 

The work of Wilfred Rall provided the first demonstration that from an electrical point of view, 
dendrites can be treated as spatially extended, branched coaxial cables subject to the laws of 
cable theory. 

First, scaling of synaptic conductances depending on electrotonic distance from the soma could 
function to equalise the effects of synapses regardless of location.

Second, dendritic voltage-dependent Na+, Ca2+ and NMDA channels can boost the 
effectiveness of weak distal synaptic inputs.

Third, a dendritic normalisation, whose function is to counteract the classical synaptic 
saturation non-linearity, could result from a patch of voltage-dependent Ca2+ channels in the 
apical tree.
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Dendrites: bug or feature?

Dendritic spikes have a clear voltage 
and stimulus intensity threshold and 
can occur without triggering axonal 
action potentials. Similarly, action 
potentials initiated in the axon do not 
propagate fully into the distal 
dendrites of neurons. 
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Dendrites: bug or feature?

2 layer model

one proximal compartment, including 
the soma, basal dendrites and axon, in 
which classical Na+ action potentials are 
generated

one distal compartment, representing 
the distal apical tree, in which fast Na+ 
and slow Ca2+ spikes are initiated

30



Dendrites: bug or feature?

The two-layer sum-of-sigmoids model is 
attractive from a computational point of 
view, and could have broad implications 
for information processing & learning.

Only with steady state input and output 
variables (i.e. spike rates) does not 
address the question of spike timing, 
which can be important in dendrites.
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Dendrites: bug or feature?

Is the 2 layer model sufficient?

Schiller et al (2000) used focal laser-activated release of caged glutamate, to 
stimulate clusters of excitatory synapses (within an approximately 10 micron radius) 
on fine basal dendrites of neocortical pyramidal cells. They found highly localised 
all-or-nothing spike-like responses that were initially triggered by AMPA receptors, 
and followed by co-activation of voltage-dependent Na+, Ca2+ and NMDA channels 
-> NMDA spikes. 

These constitute non linear highly localized dendritic processing
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Dendrites: bug or feature?

Is the 2 layer model sufficient?

Highly localised dendritic processing can also be found in the retina, in which 
(Euler et al 2002) using calcium imaging techniques demonstrated that individual 
dendritic branches of retinal starburst amacrine cells show directionally selective 
calcium signals, whereas the somatic voltage response shows no such selectivity. 
Individual dendritic branches of amacrine cells can act as independent integrative 
units with branch-specific outputs.
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Dendrites: bug or feature?

3-layer model

A next generation single neuron model 
could include a multiplicative 
interaction between proximal and distal 
integrative regions of the cell. 

Overall output of such a three-layer 
model might be expressed using the 
form y1+αy2.
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Dendrites: bug or feature?

Two independent strong synaptic inputs is 
very different for inputs near the soma and 
for those in the distal dendrites.

As the AP conductance is concentrated in 
the axon, distal inputs are ‘protected’. Distal 
dendrites thus represent a separate 
functional compartment in which 
processing can continue relatively 
uninterrupted by somatic AP firing.
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Dendrites: bug or feature?

Proximal–distal interactions could play a role in 
several modulatory effects in cortical sensory 
neurophysiology:

- contour completion
- attentional modulation
- multiplicative ‘gain fields’
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Dendrites: bug or feature?

Results / Conclusion 

● Ultimately, whether particular dendritic properties represent bugs or features 
must be determined in the context of the intact brain.

● To link these and other aspects of dendritic phenomenology to behaviour, it is 
essential to develop techniques that make this possible in the awake animal.

● New approaches can help determine when and how dendrites, and their 
compartments, contribute to the brain’s remarkable capacities for perception, 
action and memory.
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Are Dendrites Conceptually Useful?

Matthew E. Larkum
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Are Dendrites Conceptually Useful?

This article presents the argument that, while understanding the brain will require 
a multi-level approach, there is nevertheless something fundamental about 
understanding the components of the brain. The author argues that the standard 
description of neurons is not merely too simplistic, but also misses the true nature 
of how they operate at the computational level. In particular, the humble point 
neuron, devoid of dendrites with their powerful computational properties, 
prevents conceptual progress at higher levels of understanding.
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Are Dendrites Conceptually Useful?

Distinguish conceptual necessity from conceptual usefulness. 

It might be possible to show formally that any neural network with dendrites can be 
replaced, without loss of function, with some other network using point neurons, and 
therefore argue that they are not conceptually necessary. 

Neural networks (with or without dendrites) are also not conceptually necessary for 
computation. For example, they could be in principle, replaced by 0 - 1 s on a ticker 
tape with the appropriate finite state machine, i.e., a Turing machine. 
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Are Dendrites Conceptually Useful?

The essence of computation. (A) The Turing machine, a ticker tape and a finite state 
machine. (B) The key components of neural network design are architectures, learning 
rules and objective functions according to Richards et al. (2019).
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Are Dendrites Conceptually Useful?

Distinguish conceptual necessity from conceptual usefulness. 

It is now unarguable, however, that the idea of neural networks (Hopfield, 1982) 
introduces extremely useful concepts for solving computationally challenging 
problems: it introduces higher level concepts such as network architecture, learning 
rules and cost functions.

So the question here is what are the concepts that dendrites introduce that are 
useful for different levels of computations and cannot be sufficiently explained by 
point neuron models?
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Are Dendrites Conceptually Useful?

Computers can be understood at high level functions because we know they work 
on binary systems (as we build them).

However, that’s not known for neurons. If neurons don’t actually behave like point 
neurons, many of the models in neuroscience are being built on false assumptions, 
and they will impact our understanding of how the brain actually works.

43



Are Dendrites Conceptually Useful?

The operation of a point neuron is usually described as “integrate-and-fire”:

- linearly summated weighted synaptic inputs 
- determine, via an activation function
- if the neuron should be ‘on’ or ‘off’.
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Are Dendrites Conceptually Useful?

Neural networks

The artificial neural network comes historically from an attempt to encapsulate the essential 
features of brains as parallel distributed processors.

It might be possible to show formally that any neural network with dendrites can be replaced, 
without loss of function, with some other network using point neurons, and therefore argue 
that they are not conceptually necessary.

Neural networks (with or without dendrites) are also not conceptually necessary for 
computation, per se. Any standard neural network can, in fact, run on a digital computer
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Are Dendrites Conceptually Useful?

46

A common phenomenon involving 
barrages of synaptic input are 
so-called up/down-states, slow (1 Hz) 
oscillations between two membrane 
potential values, usually observed 
under anesthesia. Interestingly, 
up-state has a relatively fixed and 
stable amplitude all over the dendritic 
tree.



Are Dendrites Conceptually Useful?

47

During visual stimuli with 
orientated driftings that 
cause broadly similar 
depolarization of the 
neuron for each stimulus 
presentation, the preferred 
orientations robustly cause 
much greater action 
potential firing than others 
(Jia et al. 2010).



Are Dendrites Conceptually Useful?
Three experiments  (Chen et al., 2013; 
Smith et al., 2013; Palmer et al., 2014) 
were carried out under similar 
conditions: in vivo intracellular 
(patch-clamp) recordings from layer 2/3 
pyramidal neurons in anesthetized 
rodents.
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Are Dendrites Conceptually Useful?
Firstly, they showed that the amplitude 
of the depolarization caused by the 
up-state was unchanged by NMDA 
receptor channel block. This implies 
that AMPA receptors (the other main 
excitatory receptor type) are 
predominantly involved in subthreshold 
depolarization of the neuron. 
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Are Dendrites Conceptually Useful?
More remarkably, AP generation was 
very much affected by NMDA receptor 
channel block (C) despite the fact that 
the amplitude of the up- states was 
unchanged. 

In other words, it is the receptors that 
don’t affect the amplitude of up-states 
(NMDA) that cause action potentials, 
not the ones that do (AMPA).
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation 

The fixed up-state value results 
from a relatively uniform balance 
of excitatory (AMPA) and 
inhibitory (GABA) receptors such 
that the effective reversal potential 
is always the same. Regardless of 
the exact level of network activity, 
the balance of E / I needs to be 
constant as frequently observed
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation 

Balanced E/I input effectively 
clamps the neuron at a fixed 
depolarization, reducing the 
impact of random fluctuations 
that might otherwise generate  
AP, and is consistent with the 
fact that intracellular blockade 
of NMDA receptors has little or 
no effect.
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation 

Few (10) clustered inputs in thin 
dendrites can induce NMDA 
receptors to cooperatively open, 
generating local NMDA spikes 
(Larkum and Nevian, 2008; Larkum 
et al., 2009) causing ~10 mV 
depolarization at the cell body that 
can exceed threshold when starting 
from the up-state depolarization level.
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation 

Thousands of inputs combine 
to clamp the neuron at a 
particular subthreshold value, 
while a handful of synapses 
several orders of magnitude less 
in number but with explosive 
impact dictate the firing of the 
neuron
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Are Dendrites Conceptually Useful?

Orientation-selective neurons in 
visual cortex are a case in point.
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Are Dendrites Conceptually Useful?

Highlights  

● A learning rule derived from cable theory is used in biophysical simulations
● Pyramidal cell I/O functions can be optimized for computation by synaptic 

plasticity
● Active and passive dendritic mechanisms enhance input pattern discrimination
● Single neurons can learn network-level computations simply by tuning synaptic 

weights
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Combinations

A combination is a selection of items from a set of distinct objects, such as the 
order of selection does not matter. When the order of selection is important then 
we are referring to permutations instead. 

57



Combinations

For example a combination of two balls from a set of 5 balls with different colors 
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Combinations

For example a combination of two balls drawn from a set of 5 balls with different 
colors, can be any of the following:
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Combinations

In order to compute the number of all the possible combination of k=2 balls from 
a set of n=5 balls, we can use the formula: 
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Combinations

In order to compute the number of all the possible combination of k=2 balls from 
a set of n=5 balls, we can use the formula: 
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What if we want to compute combinations? 
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Combinations

In order to compute the number of all the possible combination of k=3 balls from 
a set of n=5 balls, we can use the formula: 
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue

Panayiota Poirazi and Bartlett W. Mel
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
We consider the combined effects of active dendrites and structural plasticity on the storage 
capacity of neural tissue. We compare capacity for two different modes of dendritic 
integration: (1) linear, where synaptic inputs are summed across the entire dendritic arbor, 
and (2) nonlinear, where each dendritic compartment functions as a separately thresholded 
neuron-like summing unit. We calculate much larger storage capacities for cells with 
nonlinear subunits and show that this capacity is accessible to a structural learning rule that 
combines random synapse formation with activity-dependent stabilization/elimination. In a 
departure from the common view that memories are encoded in the overall connection 
strengths between neurons, our results suggest that long-term information storage in neural 
tissue could reside primarily in the selective addressing of synaptic contacts onto dendritic 
subunits.

65



Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue

Cell is modeled as a set 
of m identical branches 
connected to a soma, 
where each branch 
contains k excitatory 
synaptic contacts. 

Each synapse is driven 
by one of d input lines 
and is given a small 
integer-valued weight.
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
Two alternative models:

i) linear activation: sum of all inputs

ii) non-linear activation: integration within 
branches
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
i) linear activation

linear integration (Equation 1), where the 
cell’s activation level aL(x) prior to output 
thresholding is given by a weighted sum of 
inputs from across the entire cell
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
ii) non-linear activation 

(Equation 2), where (1) the k inputs to each 
branch are combined in a weighted sum, (2) 
a static branch nonlinearity b, such as a 
sigmoid function, is applied to each of the m 
branchs subtotals, and (3) the nonlinear 
branch responses are summed to produce 
the cell’s overall activation level aN(x):
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
m: # branches, k: # synapses per branch 

s = m · k: total number of synapses

d: dendritic inputs
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
An upper bound can be computed based 
on the number of distinct memory fields 
expressible by the cell drawing s = m · k 
synaptic contacts, from d distinct input 
lines. Effectively that is the number of 
possible combinations that the cell receives 
from d inputs. 
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
Linear integration:

The combinatorial term in BL gives the 
number of ways of assigning s synaptic sites to 
the d afferents, where only the number of 
contacts formed by each afferent is counted 
regardless of location on the cell.
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
Non Linear integration:

The expression for BN was derived by applying the 
combinatorial expression in BL in two stages: (1) to 
calculate the number of distinct branch functions f 
expressible by drawing k synapses from d input 
lines with replacement, then (2) to calculate the 
number of distinct cells expressible by drawing m 
branches from f possible branch functions.
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In which case would BL = BN
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
BL = BN in the special case of 

a) one long branch (k = s) or
b) the cell has many branches containing 

only one synapse (m = s)
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
Simple example:  

m: # branches, k: # synapses per branch 

s = m · k: total number of synapses

d: dendritic inputs

For d=m=k=3: BL = 110 for linear integration, 
while BN = 220 (doubles) for non - linear 
integration
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
Capacity in bits for linear (lower curve) and several 
nonlinear cells (upper curves) with branches of 
different length; branch count increases from left to 
right as indicated schematically  beneath x axis. 
Capacity of nonlinear model grows approximately 
linearly with the number of dendritic subunits
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
For fixed branch count, capacity increases monotonically 
as branches are lengthened. Each curve is indexed by 
branch count m; saturation is evident as branches become 
relatively few and relatively long.
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue

Capacity of a nonlinear cell with 10,000 sites for 
different values of d. Branch count m grows and 
branch size k correspondingly shrinks moving 
along x axis. Cells at both ends of x axis have 
capacity equivalent to that of linear model. 
Capacity of the nonlinear model is maximal for 
cells with 1250 branches containing eight synapses 
each. Asterisks indicate half-maximum capacity.
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue

Dashed lines show analytical curves for linear and 
nonlinear cells. Solid curves show capacity measured 
empirically at 2% error criterion, using a subunit 
nonlinearity. Analytical curves were scaled down 
together by a factor of 3.5, to align peak analytical and 
empirical capacity values for the nonlinear model. 
Analytical and empirical curves were similar in form. 
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
Cells within a population were trained 
independently with random initial conditions. 
Output of population was computed using a simple 
voting scheme. Positive and negative training 
examples were in this case drawn from two 
non-Gaussian distributions. A total of 30,000 
training examples were drawn, half positive, half 
negative. Error rates are plotted for populations 
ranging from 1 to 50 cells. All cells were trained 
with m = 400, k = 25. 

81



Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
(1) cells with nonlinear subunits learn substantially more than cells without

(2) peak capacity occurs for subunits that are neither too small nor too large—with 
near-maximum capacity over a wide range of subunit sizes

(3) when subunits are of optimal size, memory capacity increases in direct proportion 
to the number of dendritic subunits available.
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
The main biophysical assumption underlying capacity calculations is that a neuron's 
integrative behavior can be captured by a simple form, which says that the neuron's 
output can be expressed as a sum of independent nonlinear subunit responses.

Surprisingly, however, the particular form of the subunit nonlinearity b, whether a 
power function, exponential, sigmoid, or other nonlinear relation, has no bearing on 
the function counts for nonlinear cells, since the sole role of the branch nonlinearity 
from the perspective of the combinatorial expression is to break the symmetry among 
otherwise identical branches.
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Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue
For a cell of realistic size, storage capacity is maximized when the cell contains a large number 
of small subunits.  For example, a cell with 10,000 synaptic contacts learns the most when it is 
broken into roughly 1000 independent subunits containing ten synapses each. This is not a 
realistic result for biological morphologies. However, the authors indicate that:

1) Around the optimal neuronal geometry, the dependence of capacity on subunit size is 
relatively weak, so different combinations have small impact on overall capacity

2) It is likely that their results underestimate the optimal subunit size for an individual cell 
because cells are described by binary weights, (all-or-none) values for the strength of a 
synaptic contact. In addition, cells learn at a population level not in isolation, but this effect 
has not been taken into account. 
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Questions?
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