Basics



Outline

Introduction

e Synaptic transmission
e Plasticity and learning

Papers

e Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of
Neural Tissue
e A synaptic learning rule for exploiting nonlinear dendritic computation



|. Synaptic transmission



Axonal boutons

An axonal bouton, also known as a
presynaptic terminal, is a
specialized varicosity on an axon
that can form a synapse with a
dendritic spine. The axonal
bouton contains synaptic vesicles
that store neurotransmitters,
which are released into the
synaptic cleft when an action
potential arrives at the bouton.
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Dendritic spines

A dendritic spine is a small protrusion
on a dendrite that receives signals from
other neurons. Dendritic spines are
highly dynamic structures that can
change shape and size in response to
neuronal activity, and thus they play a
crucial role in synaptic plasticity and
learning.

Ofer et al. 2022
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Synaptic transmission

The transmission of information across the
synapse is accomplished through the
release of neurotransmitters, which are
chemical messengers that are synthesized
and stored in the presynaptic neuron.
When an action potential reaches the
presynaptic neuron, it causes the release of
neurotransmitters into the synaptic cleft,
where they bind to specific receptors on
the postsynaptic neuron or effector cell.
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Synaptic transmission
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Synaptic transmission

The strength and duration of synaptic
transmission can be modulated by a
variety of factors, such as the
availability of neurotransmitters, the
number and sensitivity of receptors on
the postsynaptic neuron and the activity
of other neurons that make connections
with the postsynaptic neuron.
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|l. Learning / Plasticity

10



Synaptic Plasticity

Synaptic plasticity is the ability of synapses to become stronger or weaker over
time, in response to increases or decreases in their activity, i.e. the action potentials
that reach them. Synaptic plasticity is one of the most important neurochemical
foundations of learning and memory.
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Synaptic Plasticity

The strength of a synapse can
be controlled by a variety of
mechanisms that modulate the
release of neurotransmitters
from the presynaptic neuron or
the sensitivity of the
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Synaptic Plasticity

There are several ways in which synaptic strength can be controlled
presynaptically:

a) Autoreceptors [ reuptake: Many neurons have autoreceptors, i.e. a receptor for
a neurotransmitter that is expressed on the same neuron that releases it. Once
released into the synaptic cleft, neurotransmitters follow the rules of Brownian
motion and they can be reabsorbed by the neuron. This can terminate the signal
and inhibit or facilitate the release of further quantities of the neurotransmitter.
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Synaptic Plasticity

b) Modulation of calcium influx: The influx of calcium ions into the presynaptic
terminal is a key step in the release of neurotransmitter. The level of calcium
influx can be regulated by changes in the extracellular calcium concentration,
activation of voltage-gated calcium channels, and modulation of calcium-binding
proteins. Changes in calcium influx can alter the amount of neurotransmitter
released, and thus modulate synaptic strength.
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Synaptic Plasticity

c) Modulation of extracellular matrix proteins: The extracellular matrix
surrounding the presynaptic terminal can influence the release of
neurotransmitter by modulating the diffusion and availability of the involved
molecules. Changes in the composition or structure of the extracellular matrix
can alter synaptic strength.
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Synaptic Plasticity

There are several ways in
which synaptic strength can be
controlled postsynaptically, i.e.
after neurotransmitters have
been released from the
presynaptic terminal:
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Synaptic Plasticity

There are several ways in which synaptic strength can be controlled
postsynaptically:

a) Receptor desensitization: Receptors can become desensitized to
neurotransmitters if they are exposed to high levels of it for an extended period
of time. This can reduce the responsiveness of the postsynaptic neuron to
subsequent neurotransmitter release, effectively decreasing the strength of the
synapse.
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Synaptic Plasticity

b) Number of receptors: The number and distribution of receptors on the
postsynaptic membrane can be regulated by various mechanisms, including
receptor insertion and removal from the membrane, as well as lateral movement
of receptors within the membrane. Changes in receptor composition can alter
the sensitivity of the postsynaptic neuron to neurotransmitters.
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Synaptic Plasticity

c) Modulation of intracellular signaling pathways: The activation of
neurotransmitter receptors can trigger intracellular signaling pathways that can
lead to changes in gene expression, protein synthesis, and the morphology of
dendritic spines. These changes can alter the structure and function of the
synapse, resulting in changes of synaptic strength.
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Long term potentiation (LTP)

Long-term potentiation (LTP) is a subcellular mechanism of synaptic plasticity
that underlies learning and memory in the brain. It refers to the long term
strengthening of synaptic connections between neurons that occurs in response
to repeated neuronal activity. The process involves the activation of glutamate
receptors on the postsynaptic membrane, which leads to an influx of calcium
ions. This triggers a cascade of intracellular signaling pathways that ultimately
result in the insertion of new AMPA receptors into the postsynaptic membrane
or increase of their strength, increasing the sensitivity of the postsynaptic neuron
to neurotransmitter release, effectively strengthening the synaptic connection.
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Long term depression (LTD)

Long-term depression (LTD) has the opposite effect of LTP, i.e. the long term
decrease in synaptic strength. LTD also occurs in response to repeated neuronal
activity. LTD leads to a decrease in the number or the strength of AMPA
receptors on the postsynaptic membrane, therefore decreasing the sensitivity of
the postsynaptic neuron and weakening the synaptic transmission.
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Spike-timing-dependent plasticity (STDP)

STDP is a form of synaptic plasticity that depends
on the relative timing of pre- and postsynaptic
action potentials. The strength of a synaptic
connection between two neurons is modified based
on the temporal relationship between the action
potentials generated by the two neurons. If the
presynaptic neuron fires before the postsynaptic
neuron, the strength of the synaptic connection is
potentiated, whereas if the postsynaptic neuron
fires before the presynaptic neuron, the strength of
the synaptic connection is depressed.

Markram et al. 2011
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Dendrites: bug or feature?

Hausser and Mel
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Dendrites: bug or feature?

The integrative properties of dendrites are determined by a complex mixture of
factors, including their morphology, the spatio-temporal patterning of synaptic
inputs, the balance of excitation and inhibition, and neuromodulatory influences,
all of which interact with the many voltage-gated conductances present in the
dendritic membrane. Recent efforts to grapple with this complexity have focused
on identifying functional compartments in the dendritic tree, the number and size
of which depend on the aspect of dendritic function being considered. We discuss
how dendritic compartments and the interactions between them help to enhance
the computational power of the neuron and define the rules for the induction of
synaptic plasticity.
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Dendrites: bug or feature?

Spine cluster Branchlet

Dendritic region

Current Opinion in Neurobiology
What are the functional compartments in neurons? A schematic representation of different

levels of granularity in neuronal processing. (a) Calcium signalling restricted to single spines. (b)

Signalling restricted to a small cluster of spines. (c) Signalling restricted to a single terminal
branchlet. (d) Signalling extending across the entire apical dendritic tree.
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Dendrites: bug or feature?

Two extreme cases:

- Point neuron hypothesis: the neuron functions as a simple one-compartment
(usually linear) summing unit, where, all synapses have an equal opportunity
to influence neuronal output through the axon.

- Spatio-temporal interactions among synaptic inputs and the local responses
they trigger may suggest the importance of dendritic space and time for

various aspects of neuronal information processing:
- back- and forward-propagating action potentials (APs)
- synaptic inputs to spatially defined dendritic compartments
- synaptic plasticity
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Dendrites: bug or feature?

Point neuron (classic approach)

The rule for combining the effects of many synapses
under this model is generally assumed to be linear,
and can thus be expressed as a weighted sum of all
excitatory and inhibitory synaptic inputs.
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Dendrites: bug or feature?

Modern point neuron

The work of Wilfred Rall provided the first demonstration that from an electrical point of view,
dendrites can be treated as spatially extended, branched coaxial cables subject to the laws of
cable theory.

First, scaling of synaptic conductances depending on electrotonic distance from the soma could
function to equalise the effects of synapses regardless of location.

Second, dendritic voltage-dependent Na+, Ca2+ and NMDA channels can boost the
effectiveness of weak distal synaptic inputs.

Third, a dendritic normalisation, whose function is to counteract the classical synaptic
saturation non-linearity, could result from a patch of voltage-dependent Ca2+ channels in the
apical tree.
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Dendrites: bug or feature?

Dendritic spikes have a clear voltage
and stimulus intensity threshold and
can occur without triggering axonal
action potentials. Similarly, action
potentials initiated in the axon do not
propagate fully into the distal
dendrites of neurons.

2-Layer model

Thin branch
subunits
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Dendrites: bug or feature?

2 layer model

2-Layer model

one proximal compartment, including
the soma, basal dendrites and axon, in
which classical Na+ action potentials are

generated Thin branch
subunits
one distal compartment, representing

the distal apical tree, in which fast Na+
and slow Ca2+ spikes are initiated

30



Dendrites: bug or feature?

The two-layer sum-of-sigmoids model is
attractive from a computational point of
view, and could have broad implications
for information processing & learning.

Only with steady state input and output
variables (ie. spike rates) does not
address the question of spike timing,
which can be important in dendrites.

2-Layer model

Thin branch
subunits
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Dendrites: bug or feature?

Is the 2 layer model sufficient?

Schiller et al (2000) used focal laser-activated release of caged glutamate, to
stimulate clusters of excitatory synapses (within an approximately 10 micron radius)
on fine basal dendrites of neocortical pyramidal cells. They found highly localised
all-or-nothing spike-like responses that were initially triggered by AMPA receptors,
and followed by co-activation of voltage-dependent Na+, Ca2+ and NMDA channels
-> NMDA spikes.

These constitute non linear highly localized dendritic processing
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Dendrites: bug or feature?

Is the 2 layer model sufficient?

Highly localised dendritic processing can also be found in the retina, in which
(Euler et al 2002) using calcium imaging techniques demonstrated that individual
dendritic branches of retinal starburst amacrine cells show directionally selective
calcium signals, whereas the somatic voltage response shows no such selectivity.
Individual dendritic branches of amacrine cells can act as independent integrative
units with branch-specific outputs.
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Dendrites: bug or feature?

3-layer model

A next generation single neuron model
could include a  multiplicative
interaction between proximal and distal
integrative regions of the cell.

Overall output of such a three-layer
model might be expressed using the
form yl+ay2.

3-Layer model

Distal apical
thin branches

Perisomatic
thin branches
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Dendrites: bug or feature?

Two independent strong synaptic inputs is
very different for inputs near the soma and
for those in the distal dendrites.

As the AP conductance is concentrated in
the axon, distal inputs are ‘protected’. Distal
dendrites thus represent a separate
functional  compartment in  which
processing can  continue  relatively
uninterrupted by somatic AP firing.

3-Layer model

Distal apical
thin branches

Perisomatic
thin branches

35



Dendrites: bug or feature?

Proximal—distal interactions could play a role in
several modulatory effects in cortical sensory
neurophysiology:

- contour completion
- attentional modulation
- multiplicative ‘gain fields’




Dendrites: bug or feature?

Results / Conclusion

e Ultimately, whether particular dendritic properties represent bugs or features
must be determined in the context of the intact brain.

e To link these and other aspects of dendritic phenomenology to behaviour, it is
essential to develop techniques that make this possible in the awake animal.

e New approaches can help determine when and how dendrites, and their
compartments, contribute to the brain’s remarkable capacities for perception,
action and memory.
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Are Dendrites Conceptually Useful?

Matthew E. Larkum
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Are Dendrites Conceptually Useful?

This article presents the argument that, while understanding the brain will require
a multi-level approach, there is nevertheless something fundamental about
understanding the components of the brain. The author argues that the standard
description of neurons is not merely too simplistic, but also misses the true nature
of how they operate at the computational level. In particular, the humble point
neuron, devoid of dendrites with their powerful computational properties,
prevents conceptual progress at higher levels of understanding.
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Are Dendrites Conceptually Useful?

Distinguish conceptual necessity from conceptual usefulness.

It might be possible to show formally that any neural network with dendrites can be
replaced, without loss of function, with some other network using point neurons, and
therefore argue that they are not conceptually necessary.

Neural networks (with or without dendrites) are also not conceptually necessary for
computation. For example, they could be in principle, replaced by 0 - 1 s on a ticker
tape with the appropriate finite state machine, i.e., a Turing machine.
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Are Dendrites Conceptually Useful?

The essence of computation. (A) The Turing machine, a ticker tape and a finite state
machine. (B) The key components of neural network design are architectures, learning
rules and objective functions according to Richards et al. (2019).
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Are Dendrites Conceptually Useful?

Distinguish conceptual necessity from conceptual usefulness.

It is now unarguable, however, that the idea of neural networks (Hopfield, 1982)
introduces extremely useful concepts for solving computationally challenging
problems: it introduces higher level concepts such as network architecture, learning
rules and cost functions.

So the question here is what are the concepts that dendrites introduce that are
useful for different levels of computations and cannot be sufficiently explained by
point neuron models?

)



Are Dendrites Conceptually Useful?

Computers can be understood at high level functions because we know they work

on binary systems (as we build them).

However, that’s not known for neurons. If neurons don’t actually behave like point
neurons, many of the models in neuroscience are being built on false assumptions,
and they will impact our understanding of how the brain actually works.
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Are Dendrites Conceptually Useful?

The operation of a point neuron is usually described as “integrate-and-fire”:

- linearly summated weighted synaptic inputs
- determine, via an activation function
- if the neuron should be ‘on’ or ‘off’.
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Are Dendrites Conceptually Useful?

Neural networks

The artificial neural network comes historically from an attempt to encapsulate the essential
features of brains as parallel distributed processors.

It might be possible to show formally that any neural network with dendrites can be replaced,
without loss of function, with some other network using point neurons, and therefore argue
that they are not conceptually necessary.

Neural networks (with or without dendrites) are also not conceptually necessary for
computation, per se. Any standard neural network can, in fact, run on a digital computer
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Are Dendrites Conceptually Useful?

A common phenomenon involving
barrages of synaptic input are
so-called up/down-states, slow (1 Hz)

oscillations between two membrane

Trial 18 s/AAl

Prestimulus V_ (mV)

potential values, usually observed
under anesthesia. Interestingly,

Sachidhanandam et al., 2013
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Are Dendrites Conceptually Useful?
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Are Dendrites Conceptually Useful?

Three experiments (Chen et al.,, 2013;

. NMDA blocked effectively
Smith et al,, 2013; Palmer et al., 2014) intracellularly clamped
were carried out under similar

y 0
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Palmer et al., 2014
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Are Dendrites Conceptually Useful?

Firstly, they showed that the amplitude B e
of the depolarization caused by the intracellarty e
up-state was unchanged by NMDA

receptor channel block. This implies
that AMPA receptors (the other main oy
excitatory receptor type) are Membrane potential (mV)
predominantly involved in subthreshold

depolarization of the neuron.
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Are Dendrites Conceptually Useful?

More remarkably, AP generation was B
NMDA blocked effectively
very much affected by NMDA receptor intracellularly clamped
channel block (C) despite the fact that
the amplitude of the up- states was

unchanged.
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In other words, it is the receptors that
don’t affect the amplitude of up-states St
(NMDA) that cause action potentials,
not the ones that do (AMPA).

0
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Palmer et al., 2014
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation

The fixed up-state value results
from a relatively uniform balance
of excitatory (AMPA) and
inhibitory (GABA) receptors such
that the effective reversal potential
is always the same. Regardless of
the exact level of network activity,
the balance of E / I needs to be
constant as frequently observed
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation [

Balanced E/I input effectively
clamps the neuron at a fixed
depolarization, reducing the
impact of random fluctuations
that might otherwise generate
AP and is consistent with the
fact that intracellular blockade
of NMDA receptors has little or
no effect.
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation

Few (10) clustered inputs in thin
dendrites can induce NMDA
receptors to cooperatively open,
generating local NMDA spikes
(Larkum and Nevian, 2008; Larkum
et al,, 2009) causing ~10 mV
depolarization at the cell body that
can exceed threshold when starting
from the up-state depolarization level.
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Are Dendrites Conceptually Useful?

Hypothesis for spike generation |\

Thousands of inputs combine
to clamp the neuron at a
particular subthreshold value,
while a handful of synapses
several orders of magnitude less
in number but with explosive
impact dictate the firing of the
neuron
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Are Dendrites Conceptually Useful?

Orientation-selective neurons in apical tuft
visual cortex are a case in point.
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Are Dendrites Conceptually Useful?

Highlights

e A learning rule derived from cable theory is used in biophysical simulations

e Pyramidal cell I/O functions can be optimized for computation by synaptic
plasticity

e Active and passive dendritic mechanisms enhance input pattern discrimination

e Single neurons can learn network-level computations simply by tuning synaptic
weights
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Combinations

A combination is a selection of items from a set of distinct objects, such as the
order of selection does not matter. When the order of selection is important then

we are referring to permutations instead.
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Combinations

For example a combination of two balls from a set of 5 balls with different colors

n =5 balls
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Combinations

For example a combination of two balls drawn from a set of 5 balls with different

colors, can be any of the following: m

r Y
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Combinations .““

n =5 balls

In order to compute the number of all the possible combination of k=2 balls from
a set of n=5 balls, we can use the formula:
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Combinations /‘
n =5 balls

In order to compute the number of all the possible combination of k=2 balls from
a set of n=5 balls, we can use the formula:
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What if we want to compute combinations?

)
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Combinations ‘”/‘
n = 5 balls

In order to compute the number of all the possible combination of k=3 balls from

a set of n=5 balls, we can use the formula:
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Panayiota Poirazi and Bartlett W. Mel
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

We consider the combined effects of active dendrites and structural plasticity on the storage
capacity of neural tissue. We compare capacity for two different modes of dendritic
integration: (1) linear, where synaptic inputs are summed across the entire dendritic arbor,
and (2) nonlinear, where each dendritic compartment functions as a separately thresholded
neuron-like summing unit. We calculate much larger storage capacities for cells with
nonlinear subunits and show that this capacity is accessible to a structural learning rule that
combines random synapse formation with activity-dependent stabilization/elimination. In a
departure from the common view that memories are encoded in the overall connection
strengths between neurons, our results suggest that long-term information storage in neural
tissue could reside primarily in the selective addressing of synaptic contacts onto dendritic
subunits.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Cell is modeled as a set
of m identical branches
connected to a soma,
where each branch
contains k excitatory
synaptic contacts.

Each synapse is driven
by one of d input lines
and is given a small
integer-valued weight.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Two alternative models:
i) linear activation: sum of all inputs

ii) non-linear activation: integration within

branches
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

i) linear activation

linear integration (Equation 1), where the
cell’s activation level a (x) prior to output
thresholding is given by a weighted sum of
inputs from across the entire cell
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

ii) non-linear activation

(Equation 2), where (1) the k inputs to each
branch are combined in a weighted sum, (2)
a static branch nonlinearity b, such as a
sigmoid function, is applied to each of the m
branchs subtotals, and (3) the nonlinear
branch responses are summed to produce
the cell’s overall activation level a,(x):
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

m: # branches, k: # synapses per branch
s =m - k: total number of synapses

d: dendritic inputs
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

An upper bound can be computed based
on the number of distinct memory fields
expressible by the cell drawing s =m - k
synaptic contacts, from d distinct input
lines. Effectively that is the number of
possible combinations that the cell receives

from d inputs.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Linear integration:

BL=2|092(’S+d_1.)

The combinatorial term in B, gives the
number of ways of assigning s synaptic sites to
the d afferents, where only the number of
contacts formed by each afferent is counted

regardless of location on the cell.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Non Linear integration:

The expression for BN was derived by applying the
combinatorial expression in BL in two stages: (1) to
calculate the number of distinct branch functions f
expressible by drawing k synapses from d input
lines with replacement, then (2) to calculate the
number of distinct cells expressible by drawing m
branches from f possible branch functions.
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In which case would BL = BN
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

BL = BN in the special case of

a) one long branch (k =s) or
b) the cell has many branches containing

only one synapse (m =s)
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Impact of Active Dendrites and Structural Plasticity on the Memory

Capacity of Neural Tissue

Simple example:

m: # branches, k: # synapses per branch
s = m - k: total number of synapses

d: dendritic inputs

For d=m=k=3: B, =110 for linear integration,
while B, =220 (doubles) for non - linear
integration

Wiring Configurations

Total number
of distincti/o
functions

Linear Cell Nonlinear Cell

b(le + XZ) +
4x) + 30 +2x3 b(2x, + x5) +
bxz+ 2x3)

b(2x; + x3) +
4x; + 3 4223 b(.\‘l + 21‘2) +
b(x1 +Xp+ x:])
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Capacity in bits for linear (lower curve) and several A e R A TR
=

nonlinear cells (upper curves) with branches of "

different length; branch count increases from left to

right as indicated schematically beneath x axis.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

B Capacity for Fixed Branch Count

For fixed branch count, capacity increases monotonically "
- XW"

as branches are lengthened. Each curve is indexed by

branch count m; saturation is evident as branches become

relatively few and relatively long.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Capacity for Fixed Cell Size

Capacity of a nonlinear cell with 10,000 sites for
different values of d. Branch count m grows and
branch size k correspondingly shrinks moving
along x axis. Cells at both ends of x axis have
capacity equivalent to that of linear model.
Capacity of the nonlinear model is maximal for
cells with 1250 branches containing eight synapses

1 2 3 4
Number of Branches (log ,,m)

each. Asterisks indicate half-maximum capacity.

—




Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Numerical vs. Analytical Curves

Dashed lines show analytical curves for linear and gl

—— Numerical (patterns)

nonlinear cells. Solid curves show capacity measured g AN DR R

d =400

empirically at 2% error criterion, using a subunit
nonlinearity. Analytical curves were scaled down

Nonlinear
model

together by a factor of 3.5, to align peak analytical and
empirical capacity values for the nonlinear model. .
Analytical and empirical curves were similar in form. i

model

Number of Branches (log,,m)
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

Population Performance for
Linear vs. Nonlinear Cells

Cells within a population were trained
independently with random initial conditions.
Output of population was computed using a simple
voting scheme. Positive and negative training
examples were in this case drawn from two
non-Gaussian distributions. A total of 30,000
training examples were drawn, half positive, half
negative. Error rates are plotted for populations 4
ranging from 1 to 50 cells. All cells were trained IR W N "
with m =400, k = 25.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

(1) cells with nonlinear subunits learn substantially more than cells without

(2) peak capacity occurs for subunits that are neither too small nor too large—with

near-maximum capacity over a wide range of subunit sizes

(3) when subunits are of optimal size, memory capacity increases in direct proportion
to the number of dendritic subunits available.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

The main biophysical assumption underlying capacity calculations is that a neuron's
integrative behavior can be captured by a simple form, which says that the neuron's
output can be expressed as a sum of independent nonlinear subunit responses.

Surprisingly, however, the particular form of the subunit nonlinearity b, whether a
power function, exponential, sigmoid, or other nonlinear relation, has no bearing on
the function counts for nonlinear cells, since the sole role of the branch nonlinearity
from the perspective of the combinatorial expression is to break the symmetry among
otherwise identical branches.
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Impact of Active Dendrites and Structural Plasticity on the Memory
Capacity of Neural Tissue

For a cell of realistic size, storage capacity is maximized when the cell contains a large number
of small subunits. For example, a cell with 10,000 synaptic contacts learns the most when it is
broken into roughly 1000 independent subunits containing ten synapses each. This is not a
realistic result for biological morphologies. However, the authors indicate that:

1) Around the optimal neuronal geometry, the dependence of capacity on subunit size is
relatively weak, so different combinations have small impact on overall capacity

2) It is likely that their results underestimate the optimal subunit size for an individual cell
because cells are described by binary weights, (all-or-none) values for the strength of a
synaptic contact. In addition, cells learn at a population level not in isolation, but this effect
has not been taken into account.
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Questions?
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